Microcrystalline silicon solar cells: effect of substrate temperature on cracks and their role in post-oxidation

نویسندگان

  • M. Python
  • D. Dominé
  • T. Söderström
  • F. Meillaud
  • C. Ballif
چکیده

Microcrystalline silicon (mc-Si:H) cells can reach efficiencies up to typically 10% and are usually incorporated in tandem micromorph devices. When cells are grown on rough substrates, ‘‘cracks’’ can appear in the mc-Si:H layers. Previous works have demonstrated that these cracks have mainly detrimental effects on the fill factor and open-circuit voltage, and act as bad diodes with a high reverse saturation current. In this paper, we clarify the nature of the cracks, their role in postoxidation processes, and indicate how their density can be reduced. Regular secondary ion mass spectrometry (SIMS) and local nano-SIMS measurements show that these cracks are prone to local post-oxidation and lead to apparent high oxygen content in the layer. Usually the number of cracks can be decreased with an appropriate modification of the substrate surface morphology, but then, the required light scattering effect is reduced due to a lower roughness. This study presents an alternative/complementary way to decrease the crack density by increasing the substrate temperature during deposition. These results, also obtained when performing numerical simulation of the growth process, are attributed to the enhanced surface diffusion of the adatoms at higher deposition temperature. We evaluate the cracks density by introducing a fast method to count cracks with good statistics over approximately 4000mm of sample cross-section. This method is proven to be useful to quickly visualize the impact of substrate morphology on the density of cracks in microcrystalline and in micromorph devices, which is an important issue in the manufacturing process of modules. Copyright# 2010 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microcrystalline Silicon Solar Cells: Effect of Substrate Temperature on Cracks

Single junction microcrystalline silicon solar cells presently reach confirmed efficiencies up to 10.1%. Further improvement on device quality is now necessary to continuously increase the electrical performances of the solar cells. Zones of porous material, called “cracks”, appear when the substrate, such as glass covered with zinc oxide (ZnO), is too “rough”. Previous works have demonstrated ...

متن کامل

Study the Effect of Silicon Nanowire Length on Characteristics of Silicon Nanowire Based Solar Cells by Using Impedance Spectroscopy

Silicon nanowire (SiNW) arrays were produced by electroless method on polycrystalline Si substrate, in HF/ AgNO3 solution. Although the monocrystalline silicon wafer is commonly utilized as a perfect substrate, polycrystalline silicon as a low cost substrate was used in this work for photovoltaic applications. In order to study the influence of etching time (which affects the SiNWs length) on d...

متن کامل

Thin film silicon solar cells for space applications: Study of proton irradiation and thermal annealing effects on the characteristics of solar cells and individual layers

The paper reports on the effects of a proton irradiation campaign on a series of thin-film silicon solar cells (singleand double-junction). The effect of subsequent thermal annealing on solar cells degraded by proton irradiation is investigated. A low-temperature annealing behaviour can be observed (at temperatures around 100 to 160 C) for microcrystalline silicon solar cells. To further explor...

متن کامل

Control of Doped Layers in P-i-n Microcrystalline Solar Cells Fully Deposited with Hwcvd

In this paper, the influence of the deposition conditions on the performance of p-i-n microcrystalline silicon solar cells completely deposited by Hot-Wire Chemical Vapour Deposition is studied. With this aim, the role of the doping concentration, the substrate temperature of the p-type layer and of amorphous silicon buffer layers between the p/i and i/n microcrystalline layers is investigated....

متن کامل

Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics

Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010